

OFFICE OF RESEARCH, DEVELOPMENT, AND TECHNOLOGY

PROGRESS TOWARD MORE RESILIENT PAVEMENTS

ASTM Webinar: FHWA Resiliency Efforts

Oct 21st, 2020

U.S. Department of Transportation Federal Highway Administration Unless otherwise noted, FHWA is the source of all images in this presentation.

Amir Golalipour, Ph.D., P.E. Office of Infrastructure Research and Development

> Heather Dylla, Ph.D. Office of Preconstruction, Construction, and Pavements

> > **TURNER-FAIRBANK** Highway Research Center

ENVIRONMENTAL IMPACTS ON PAVEMENTS

- Environmental Factors Contribute to Pavement Distresses blowups, buckling, rutting, thermal cracking
- Long-Term Pavement Performance Program Impact of Environmental Factors on Pavement Performance*

36% of total damage for flexible pavements

24% of total damage for rigid pavements

• Pavements designed using climatic data

However, engineers typically assume stationarity

*www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/16078/16078.pdf

FHWA RESILIENCE

Application to Pavements

PAVEMENT ADAPTATION STRATEGIES: 1. MONITOR TRENDS

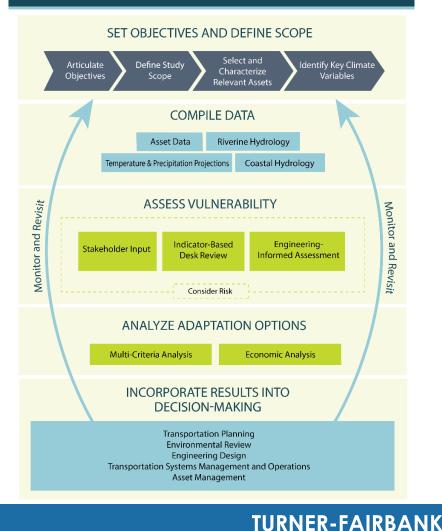
Most predicted changes to environmental variables are projected to occur relatively slowly in relation to a typical pavement lifecycle.

https://www.fhwa.dot.gov/pavement/sustainability/hif15015.pdf

Table 2. Key pavement indicators to monitor for climate change impacts.

Asphalt Pavement Indicators	Concrete Pavement Indicators	
Rutting of asphalt surface	Blow-ups (JPCP)	
Low temperature (transverse) cracking	Slab cracking	
Block cracking	Punch-outs (CRCP)	
Raveling	Joint spalling	
Fatigue cracking and pot holes	Freeze-thaw durability	
Rutting of subgrade and unbound base	Faulting, pumping, and corner breaks	
Stripping	Slab warping	
	Punch-outs (CRCP)	

WHEN TRENDS DIFFER: 2. EVALUATE VULNERABILITY


Objective:

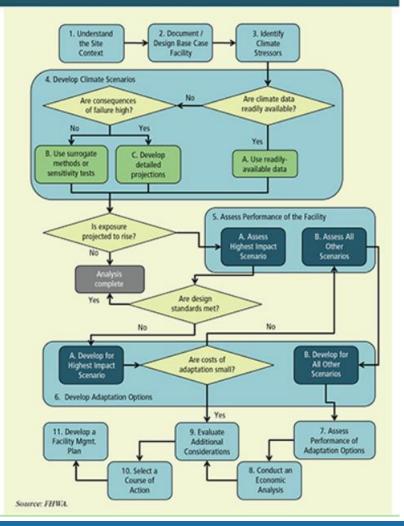
- Identify if pavement assets are more vulnerable than other system assets.
- Prioritize potential vulnerabilities for system.

Approach:

- Use Vulnerability Assessment Scoring Tool.
- Input local asset data.
- Output relative vulnerability score per asset.

VULNERABILITY ASSESSMENT AND ADAPTATION FRAMEWORK

Highway Research Center 5


U.S. Department of Transportation Federal Highway Administration

3. PLAN AND DESIGN INFRASTRUCTURE TO MEET FUTURE CONDITIONS

- Adaptation Decision-Making Assessment Process (ADAP).
- Risk-based approach for planners, designers, or engineers.
- Tailored to state.
- Aids decision makers in determining which project alternative best (life cycle costs, resilience, regulatory and political settings).

www.fhwa.dot.gov/environment/sustainability/resilience/tools

DECISION TREE OF THE ADAP STEPS

FHWA RESILIENCE

Case Studies

PAVEMENTS: ADAPTATION CASE STUDIES

These are some examples of recent projects.

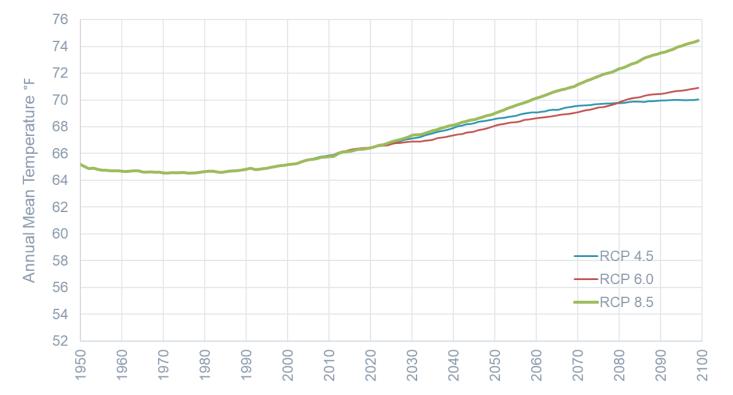
Study Name	Location	Stressor(s) Studied
TEACR Pavement Shrink- Swell	State Highway 170, near Dallas, Texas	Temperature, precipitation
TEACR Pavement Freeze- Thaw	St. Rte. 6/ St. Rte. 15/ St. Rte. 16, Guilford, Piscataquis County, Maine	Temperature, precipitation
GC2 Pavement	Mobile, Alabama	Temperature
WFLHD/Alaska DOT & PF Pilot	Dalton Highway Mile Post (MP) 9 to MP 11, Alaska	Temperature, precipitation
TEACR Slope Stability	I-77, MP 1.8 to MP 6.3, Carroll Co. Virginia	Precipitation, temperature

TEXAS SH 170 - CASE STUDY

Study Focus

Evaluate temperature and precipitation affect on pavement performance.

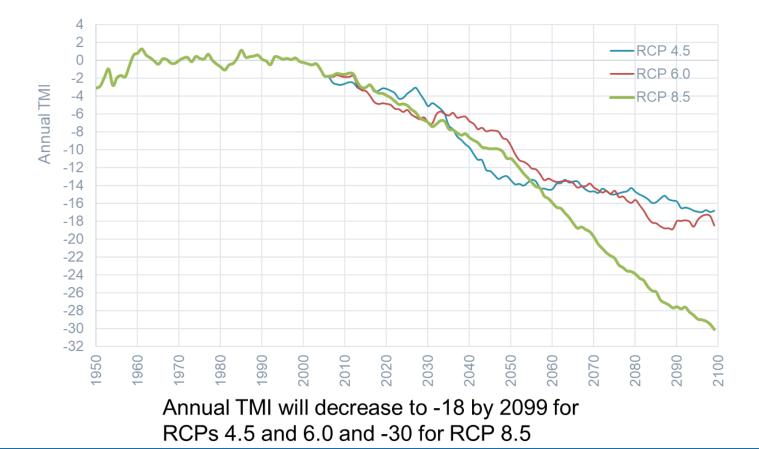
Project Scope


- Dallas, Texas area expansive soils
- Proposed project new construction

Approach

- Estimated pavement performance using mechanistic empirical pavement performance prediction models.
- Used projected climate data for temperature and precipitation.

SH 170 - FUTURE TEMPERATURE CHANGES

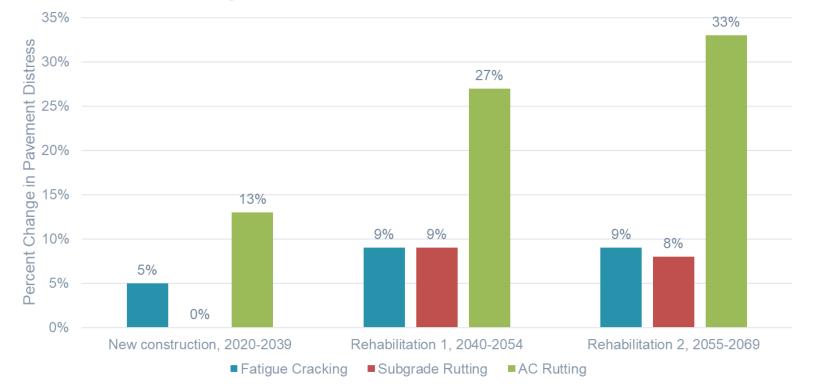

20-Year Moving Average of Annual Mean Temperature at Fort Worth, Texas.

Increase in annual mean temperature by 4 to 6°F for RCPs 4.5 and 6.0 and by 9 to 10°F for RCP 8.5

SH 170 - FUTURE MOISTURE CHANGES

20-Year Moving Average of Thornthwaite Moisture Index at Fort Worth, Texas.

US, Department of Transportation Federal Highway Administration


 TURNER-FAIRBANK

 Highway Research Center

 111

SH 170 - IMPACTS TO FLEXIBLE PAVEMENTS

Percent Change in Flexible Pavement Distresses Under RCP 8.5

Stiffer asphalt binder grade (from PG 70-YY to PG 76-YY)

SH 170 - IMPACTS TO RIGID PAVEMENTS

- Drying Shrinkage
 - Increase 2.5% per 1% decrease in ambient relative humidity
 - Accelerated by increasing ambient temperature
- Warping Stresses
 - No difference
- Curling Stresses
 - Ambient temperature increases expected to increase temperature gradient
 - Increased curling, 1% increased strains per 1°F increase in temperature
- Crack Width
 - 6% increase due to 3.7% decrease in relative humidity and 3.1°F increase in annual mean air temperature

Higher steel in Continuously Reinforced Concrete Pavements

SH 170 - LESSONS LEARNED

Increasing temperature and aridity will affect material properties

- Drying of soils increased subgrade support
- Softening of asphalt increased rutting
- Shrinkage in concrete increased crack width

Study Limitations

- Effect of soil shrink/swell on pavement roughness
- Shrinkage cracking in concrete due to drying
- Vegetation-induced cracking due to arid weather
- More Resilient Pavements Strategies Exist

Not major cost increase

FHWA RESILIENCE

Ongoing Efforts

PAVEMENT RESILIENCY PRACTICES

Joint Project with:

- Office of Preconstruction, Construction, and Pavements
- Office of Planning, Environment, & Realty
- Office of Infrastructure Research and Development

Project Duration: 2018-2021

- Literature Review & Gap Analysis
- Peer Exchange
- Summary of Practices

HOW CAN YOU HELP?

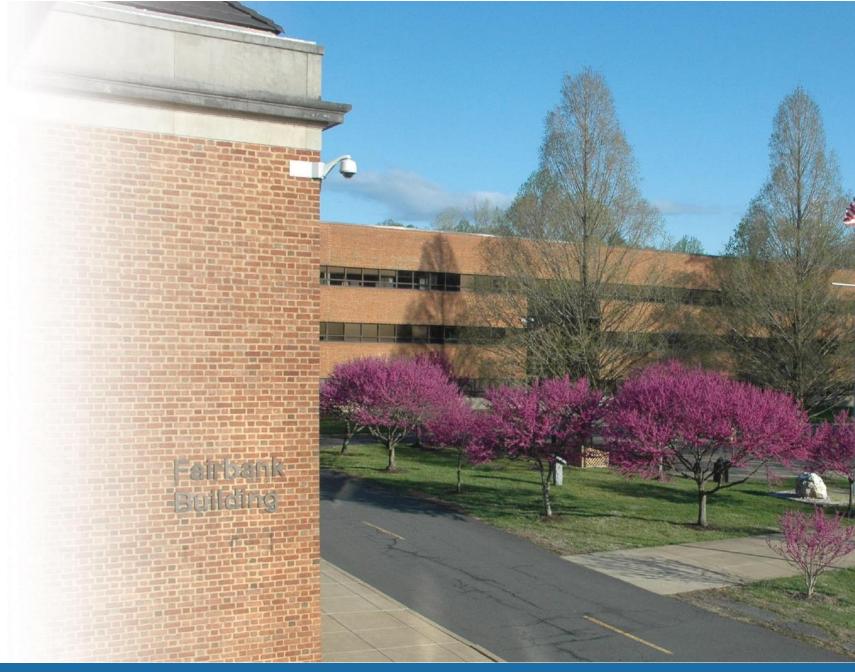
Encourage Agencies to Consider Resiliency in Planning, Designs, and Operations

Help Disseminate FHWA Resiliency Resources

- Case Studies
- Vulnerability Assessment
- Adaptation Decision-Making Assessment Process

Continue Research

CONTACTS


Amir Golalipour, Ph.D., P.E.

amir.golalipour@dot.gov

Heather Dylla, Ph.D.

heather.dylla@dot.gov

 \succ

U.S. Department of Transportation Federal Highway Administration

