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Q: What considerations are there with 
statistical prediction intervals when the 
underlying distribution is known to be 
based on attribute data?
A. In our two previous DataPoints articles, we 
discussed nonparametric statistical intervals that 
are not dependent on an underlying statistical 
distribution.1,2 This article concerns prediction 
intervals for the next observation when we have 
a set of data and our data is of the attribute 
type. There are two common cases. Case 1 oc-
curs where the type of data we have is governed 
by the binomial distribution, and Case 2 occurs 
where the data are governed by the Poisson 
distribution. The intervals presented are approxi-
mate and are based on an approximating normal 
distribution. They should be useful for most 
cases where the initial sample observation is at 
least five events for the binomial case, and 10-15 
or more for the Poisson case. The entire theory 
has been summarized previously by Hahn, 
Meeker and Nelson (see References 3 and 4). As 
in previously discussed interval estimation pro-
cedures, we continue to assume that all samples 
are a random representative of a population or 
from a process in a state of statistical control.  

Prediction Intervals for the 
Binomial Distribution 
For attribute type data, the binomial distribution 
is one of the most important and widely applied 
in all of statistical practice. It is used where there 
is a fixed “event” probability p, a sample size n 
and a random variable r equal to the number 
of items in the sample that have the defined 
characteristic for the “event.” The probability p 
is called a “success” probability but need not be 
a desirable type event. In the prediction interval 
context, the value of p is unknown. For n objects 
in a sample, one can observe at least 0 and at 
most n “successes.” Often a “success” event is 

related to a quality attribute such as not meet-
ing a requirement. Practitioners also call this a 
go/no-go type of sampling.  

The problem may be stated as follows. 
We have an initial sample of size n and have 
observed r “events” among n inspections. In a 
future sample of size m, we will observe some 
number of events y. It is desirable to construct 
an interval that would contain y with some 
stated confidence, say C. The interval is called 
a prediction interval for the future observation 
y. Let p̂   = r/n be the estimate of the unknown 
process average p, based on the initial sample 
size n. Let m be the future sample size, and let 
the confidence coefficient be C = 1 - α . The 
following formula is used to construct the two-
sided prediction interval for future number of 
events y. 

 							     

mp ±Zα /2

mp(1− p)(m +n)
n

    	 (1)
  
 In Equation 1, the quantity Zα /2 is a quantile 

selected from the standard normal distribution 
that leaves an area of α /2 to the right ofZα /2  . 
Thus, if 95 percent confidence is desired, α  = 
0.05 and Z0.025 = 1.96. Equation 1 is derived from 
the fact that the estimate p̂  will have a normal 
distribution in repeated application, as long as 
the number of observed events in the initial 
sample is five or more. For further details, see 
Reference 3 or 4. 

Example 1 
A quality metric for a certain operation in a 
large firm is to measure the number of rejected 
material lots received by the firm’s receiving in-
spection operation. This information is measured 
and reported to management on a monthly ba-
sis. The recent record indicates that last month 
seven of 107 shipments were rejected. Next 
month, the firm expects to receive 84 lots. As-
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suming that the quality of incoming lots remains 
the same, what number y of rejected lots do we 
predict to occur in next month’s inspections with 
90 percent confidence? Here, n = 107, m = 84, 
p̂   = 7/107 = 0.0654, α  = 0.1 and Z0.05 = 1.645. 
Using Equation 1, the resulting prediction interval 
for y is:

 

5.42 ± 4.95 or about 0.47 to 10.37.
We round this result to whole numbers as 0 ≤ 

y ≤ 11. Thus we may expect between 0 and 11 as 
long as the process remains in statistical control, 
and the unknown process average p does not 
change.

Prediction Intervals for the  
Poisson Distribution 
For the Poisson distribution, observations are 
made on an inspection region that can be based 
on time, area, space, number of objects or some 
other region description. The number of events 
we observe can be any whole number at least 
0. The unknown parameter in this distribution 
is the rate of event occurrence λ . If r events 
are observed in an initial region of size s, the 
estimate of the rate is λ = r/s. In a future 
inspection region of size t, we will observe some 
number y of events. It is desired to construct a 
prediction interval for the variable y.    

In this method, we assume that r is at least 

10-15 or more. This assures that the statistic   
will be approximately normally distributed. We 
continue to use a confidence coefficient of C = 1 

84(0.0654)± 1.645 84(0.0654)(1−0.0654)(84+ 107)
107

This article concerns prediction intervals for the next observation 
when we have a set of data and our data is of the attribute type. 
There are two common cases. Case 1 occurs where the type of data 
we have is governed by the binomial distribution, and Case 2 occurs 
where the data are governed by the Poisson distribution. 
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(continued) - α . The prediction interval for y, the 
number of future events in the region of size t, 
is constructed according to Equation 2 below.

 							     
		  λ̂t ±Zα /2

λ̂t(s +t)
s

 	 (2)

Example 2 
In planning for future replacements of a cer-
tain component used on cell phone towers, a 
company would like to use the past two years 
of data in making a prediction for next year. In 
the last 24 months there were 29 replacements 
required. If things remain the same, how many 
replacements may we expect in the next year 
with 95 percent confidence?

Here, the current data comes from an inter-
val of length s = 24 months. The observed num-
ber of events in this period is r = 29. The rate 
estimate is therefore λ   = 29/24 = 1.208 events 
per month. The future period is t = 12 months 
and the confidence desired is C = 95 percent. 
The value of Z is Z0.025 = 1.96. Using Equation 2, 
the prediction interval is constructed as: 

1.208(12)± 1.96 1.208(12)(24+ 12)
24

 

14.5 ± 4.7 or about 9.8 to 19.2.
We round this result to whole numbers as 

10 ≤ y ≤ 19. Thus we may expect approximately 
between 10 and 19 replacements in the next 12 
months so long as the process remains in statis-
tical control and the process average (rate) does 
not change. It is important to note that in work-
ing with rates, s, t and the rate estimate have to 
have the same units in order to use Equation 2. 
In this example, the units were months.

Readers interested in the authors’ three-part se-
ries on statistical intervals based on the normal 
distribution should see the DataPoints columns 
on statistical intervals in ASTM Standardization 
News, July//Aug. 2011, Sept./Oct. 2011 and Nov./
Dec. 2011.5-7
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Correction: In the January/February 2014 
DataPoints column, “Statistical Intervals: Non-
parametric, Part 2,” Equation 1c should have 
been:

n ≥ ln(1 - C)/ln(p)

snonline
Get more tips for ASTM standards development at  
www.astm.org/sn-tips. 
 
Find other DataPoints articles at www.astm.org/ 
standardization-news/datapoints.


