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Probability Models for 
Epidemics and Materials
By Peter Fortini

Q How does knowledge of materials 
help us to understand an 
epidemic?

A  Throughout the current COVID-19 
pandemic, we have seen graphs in 

newspapers showing numbers of new 
cases in different countries, regions, or 
states rise, level off and fall, then 
perhaps rise again. In seeking to 
understand what is going on, we draw 
on the training and knowledge we have. 
There are close analogies when we 
consider the structure of some of the 
materials of interest to ASTM 
International and in ASTM standards.

At ASTM, we mainly see statistics in the 
context of defining repeatability and 
reproducibility of test methods, control 
charting for processes, acceptance 
sampling, calibration, and perhaps 
design of experiments. However, 
the study of statistics also includes a 
large dose of probability theory and 
stochastic processes. 

A classic stochastic process example is 
the Galton-Watson branching process. 
This process starts with one individual, 
which generates none, one, or more 
(a random number) of “progeny” for 
the next generation. The number 
of progeny is given by a probability 
distribution, p0, p1, p2 etc. Each of these, 
in turn, generates a random number of 
individuals for a third generation, and 
so on. In the Galton-Watson branching 

process, the number follows the same 
probability distribution.

This probability model, created by 
Francis Galton, was originally applied to 
the survival or spread of family names, 
in which the relevant progeny of an 
individual is the number of sons who will 
carry the family name. In genetics, an 
additional case is the survival and spread 
of a mutant gene, in which the mean 
number of progeny is a direct measure of 
the “fitness” of the mutant gene. 

Further examples given in classic 
texts on probability are nuclear chain 
reactions and lengths of waiting lines 
(where the “progeny” of an individual 
being served are those who join the 
queue while that person is being 
served).1 An epidemic is yet another 
example of the process, where the 
progeny of an infected individual are 
additional people that person infects.

The basic features of this process are: 

—— There is a probability p0 that the initial 
individual gives rise to no progeny for 
the next generation, so the process 
dies out immediately.
—— There is a probability that the chain 
dies out even if the initial individual 
has progeny. This will always happen 
if the mean μ (in epidemiology, 
the reproductive number R0) of 
the distribution of progeny of an 
individual is less than one.
—— If the mean of the progeny 

distribution is greater than one, there 
is a chance that the number will 
grow exponentially. There is still a 
chance of dying out. The probability 
of eventual die-out can be calculated 
using the theory of the Galton-Watson 
process. The calculation is a solution 
to the following  equation, where P(x) 
is the probability-generating function 
of the progeny distribution.

With mean greater than one, once the 
number of individuals in a generation is 
high enough, the growth is for practical 
purposes exponential with:

number of individuals in n-th generation 
= k exp(μ n) 

where k depends on the variation that 
occurs in the initial stages.

Of course, unlimited exponential growth 
cannot continue for long with any real 
process. There will be a resource limit. 
For an epidemic, it is the population of 
people potentially exposed. For a chain 
reaction, it is the amount of nuclear 
material to start with as well as its 
dispersion in the subsequent explosion.

Where, in the context of materials, do 
we see similar processes? Important 
additional examples are part of polymer 
science and are described in the classic 
text by Flory.2 Many materials, such as 
resins, coatings, plastics, and rubber 
are made of molecules that start as long 
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linear chains and are joined  
by crosslinks.  

The branching process applies to 
materials in the following way. 

Imagine starting from a randomly chosen 
(monomer) unit in such a material. We 
consider the linear chain that it is on to 
be the initial individual. Its “progeny” are 
additional chains that are connected to it 
by crosslinks or branches. 

Figures 1 and 2 show the comparison. 
For simplicity, it shows a case where 
the process dies out. The entire set of 
chains that are reached by following the 
crosslinks (combining generations) is 
the portion of the material connected 
to the initially chosen one. In an 
oligomeric, uncured resin, the mean 
number of additional chains connected 
to an initial one is less than one. When 
a material is cured, the mean number 
of crosslinks or branches on a chain 
is increased to greater than one. 
Exponential growth then means that 
the initial unit is part of an effectively 
infinite network. The gel point is the 
point of curing at which the infinite 
network first appears. Not far into curing 
of crosslinked polymeric materials, the 
majority of the material comprises a 
single large molecule. The probability 
of ultimate die-out from the initially 
random monomer unit gives us the 
fraction of the material not connected 
to this network. This is the sol fraction of 
the polymer, which might be extractible. 

Applying this analogy to the spread of an 
epidemic or pandemic, it illustrates that 
in the uncontrolled case, essentially all of 
a susceptible population will eventually 
be infected from a first case, and only 
a relatively small fraction will not be 
connected to the contagion network.

Many of the graphs that follow the 
progress of the current COVID 
pandemic show declines after initial 
rises in case numbers. Based on the 
analogy to the networks in polymeric 
materials, we should only expect this 
to occur when the vast majority of the 
population has been infected. However, 
the total numbers are still only a fraction 
of that. 

What is behind the declines we 
see? Declines may partly be due to 
geographic distance between regions 
reporting their numbers and partly to 
general social fragmentation, with the 
members of our society belonging to 
subgroups that have relatively little 
mutual contact and so are not (yet) 
affected. Undoubtedly, however, the 
declines are mainly due to the measures 
that have been taken: canceling large 
gatherings, mask wearing when we do 
have contact with the general public, 
working from home, and other social 
distancing, to reduce the mean of the 
progeny distribution directly. 

Similarities between apparently very 
different phenomena become clear 
when they are described mathematically. 
What you already know about one or 
more of these gives you a starting point 
for understanding new ones. ■
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Figure 1 — Realization of a Branching 
Process

Figure 2 — A Polymer Network
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