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Statistical Intervals: Nonparametric 
Part 2
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d a t a p o i n t s    a statist ics q&a

Q: What considerations are there with 
nonparametric statistical intervals when 
the underlying distribution varies?

A. In Part 2 of this nonparametric statistical in-
tervals series we consider tolerance type intervals 
where the underlying distribution can be of any 
type. We continue to assume that the sample is a 
random representative of a population or from a 
process in a state of statistical control.  

Nonparametric Tolerance Type 
Intervals 
A tolerance interval is an interval, one-sided or 
two-sided, constructed in a way to contain a 
specified proportion, p, of an entire population 
(distribution) with some confidence C. Tolerance 
intervals may apply to any kind of distribution, 
including the normal form. For details on the 
case of the normal distribution, see Reference 1. 

Consider the case where we do not know the 
underlying distribution of the variable. In this 
scenario, the practitioner has a random sample 
of n observations taken from some population 
or from a process under study and would like to 
create an interval using the sample maximum 
and/or minimum that predicts at least a propor-
tion p of all future values, at some confidence 
level C. Suppose n is the sample size, and let 
x(1) and x(n) denote the sample minimum and 
maximum, respectively. There are three basic 
intervals of this type: 

kk Type 1, one-sided interval, Case 1:  [x(1), ∞),
kk Type 1, one-sided interval, Case 2:  (-∞, x(n)], 

and
kk Type 2, two-sided interval: [x(1), x(n)].

In each of these three cases we want to 
claim that the interval covers or contains at 

least a proportion p of the entire population 
that the data has come from, using a confi-
dence level C. This is equivalent to stating that 
there is a confidence C that the probability is 
at least p that any future value of x would fall 
within the interval. In general, there is a rela-
tionship between n, p and C. Knowledge of any 
two of these three variables allows determina-
tion of the third. 

For the one-sided cases [x(1), ∞) or (-∞, x(n)], 
we have essentially a success run of size n at 
or above the smallest order statistic (or at or 
below the largest order statistic). If we want to 
claim that at least a proportion p is greater than 
or equal to x(1), we have a success run of length 
n. This works like a binomial with probability p 
and n successes. The relationship is given as 
Equation 1a. 

 							     
p ≥ 1−cn

	        (1a)

Equation 1a may be solved for p, n or C, 
which gives us two additional relationships.

 							     
C ≥ 1 - pn		        (1b)

				  
			 
                     	       (1c)			  n ≥ 1n(1−c)
1n(1− p)

For the question of sample size, use Equation 
1c. Should we want to use 95 percent confidence 
and claim that a proportion of at least p = 0.99 
lies above x(1), then using Equation 1c we find 
that n = 299 will just achieve this. Note that the 
two versions of the one-sided case are identi-
cal in this analysis. If we want to determine 
the confidence demonstrated for a specified 
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proportion and given sample size, use Equation 
1b. For example, if we have n = 22 and want to 
claim that at least p = 90 percent of the popula-
tion falls above the sample minimum, then C ≥ 
1 - 0.922 = 0.9015 or approximately 90 percent 
confidence. Since the 10th percentile (also called 
the B10 life) is frequently required in materials 
and components testing, and since 90 percent 
confidence is in common use, one often sees n 
= 22 as a required sample size in materials or 
component testing.  

For the two-sided case [x(1), x(n)], at least 100p 
percent of the population lies in the interval with 
confidence C, when a sample size of n is used. 
Analysis of this case leads to Equation 2 involv-
ing C, p and n. Details of the derivation are given 
in Mathematical Statistics, by S. S. Wilks.2 

 							     
npn-1 - (n - 1) pn ≥ 1 - C	 (2)

This equation is solved iteratively for the 
unknown quantity when two of p, n and C are 
specified. Table 1 illustrates how this plays out 
among p, n and C. The table shows the sample 
size required at confidence level C to claim that 
the largest and smallest order statistics will 
bound a proportion of at least p of the popula-
tion. For example, if we use n = 130, then with 
99 percent confidence we can claim that at least 
95 percent of future output will fall within the 
sample minimum and maximum. 

Example 1 
If we have 37 observations from a materials 
breaking strength application and the minimum 
value in the sample is 1200, then we can claim 
with 95 percent confidence that a proportion of at 
least approximately 92 percent of the population 
lies at or above the sample minimum. Here, we 
have used Equation 1a with n = 37 and C = 0.95.  

						    

Example 2
What sample size should we use if we want 
to be 90 percent confident that the sample mini-
mum and maximum bounds at least 99 percent 
of a population? Use Equation 2 with C = 0.9 
and p = 0.99 and increment n until the require-
ment of Equation 2 is just met. We find that n = 
388 just meets the requirement.

We can also develop tolerance 
intervals using any arbitrary order sta-
tistics, but the most common interval 
uses the sample minimum and/or 
maximum values. Interested readers 
should consult the reference by S. S. 
Wilks2 for details. It is important to 
note that tolerance intervals behave 
in much the same way as confidence 
and prediction type intervals. That is, 
the capture probability (confidence) 
is a long run result. In other words, 
confidence is the long run proportion 
of cases, under the same conditions 
and with differing data, that would 
predict correctly what we say it 
would. For this and many other cases, 
including a comprehensive literature 
reference, readers are encouraged to 
see Statistical Intervals: A Guide for 
Practitioners, by Hahn and Meeker.3 
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Table 1 — Sample Size to 
Achieve a Confidence C that the 
Sample Minimum and Maximum 
Capture at Least p Percent of a 
Population or Process

Confidence Level, %

p% 90 95 99

99.9 3,889 4,742 6,635

99.0 388 473 662

98.0 194 236 330

97.0 129 157 219

96.0 96 117 164

95.0 77 93 130

94.0 64 78 108

93.0 55 66 92

92.0 48 58 81

91.0 42 51 71

90.0 38 46 64

85.0 25 29 41

80.0 18 21 30

75.0 15 17 23

70.0 12 14 19

65.0 9 11 16

60.0 8 10 13

55.0 7 8 11

50.0 6 7 10




